In Vivo Transfer of Intracellular Labels from Locally Implanted Bone Marrow Stromal Cells to Resident Tissue Macrophages
نویسندگان
چکیده
Intracellular labels such as dextran coated superparamagnetic iron oxide nanoparticles (SPION), bromodeoxyuridine (BrdU) or green fluorescent protein (GFP) are frequently used to study the fate of transplanted cells by in vivo magnetic resonance imaging or fluorescent microscopy. Bystander uptake of labeled cells by resident tissue macrophages (TM) can confound the interpretation of the presence of intracellular labels especially during direct implantation of cells, which can result in more than 70% cell death. In this study we determined the percentages of TM that took up SPION, BrdU or GFP from labeled bone marrow stromal cells (BMSCs) that were placed into areas of angiogenesis and inflammation in a mouse model known as Matrigel plaque perfusion assay. Cells recovered from digested plaques at various time points were analyzed by fluorescence microscopy and flow cytometry. The analysis of harvested plaques revealed 5% of BrdU(+), 5-10% of GFP(+) and 5-15% of dextran(+) macrophages. The transfer of the label was not dependent on cell dose or viability. Collectively, this study suggests that care should be taken to validate donor origin of cells using an independent marker by histology and to assess transplanted cells for TM markers prior to drawing conclusions about the in vivo behavior of transplanted cells.
منابع مشابه
Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملA Comparative Study of Therapeutic Benefits of Intraspinal and Intravenous Bone Marrow Stromal Cell Administration to Spinal Cord Injuries
Background: Recent reports demonstrated that intravenous route as a minimally invasive method, similar to direct injection, is suitable for bone marrow stromal cell (BMSC) transplantation. In this study, we made a comparison of intraspinal and intravenous route of BMSC administration to repair injured spinal cord tissue. Methods: Six groups of adult female rats were used in this study. Laminect...
متن کاملتأثیر سلولهای استرومال آلوژن برگرفته از مغز استخوان در التیام زخم سوختگی پوستی درجه سه در موش
Background: Recently, bone-marrow-derived cells have introduced new therapeutic approaches to the management of wound healing in severe skin injuries. Bone marrow-derived stromal cells are described as a heterogeneous population, including mesenchymal stem cells, hematopoietic stem cells, and fibro-blast cells. Results derived from several studies indicate that these cells may contribute to tis...
متن کاملThe Long-term Effects of Uncultured Omental Adipose-derived Nucleated Cells Fraction and Bone-marrow Stromal Cells on Sciatic Nerve Regeneration
Objective- Adipose tissue is an appropriate source for isolation of cells with stem-cell–like properties. In the present long-term study, the effects of the omental adipose-derived nucleated cells (OADNCs) fraction were compared to those of the undifferentiated cultured bone marrow stromal cells (BMSCs) on sciatic nerve regeneration. Design- Experimental in vivo study. Animals- Fift...
متن کامل